Guideline:

Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age
Acknowledgements

This guideline was coordinated by Dr Luz Maria de Regil under the supervision of Dr Juan Pablo Peña-Rosas, with technical input from Dr Metin Gulmezoglu, Dr Jose Martines, Dr Matthews Mathai and Dr Lisa Rogers. Thanks are due to Dr Regina Kulier and the staff at the Guidelines Review Committee Secretariat for their support throughout the process. Thanks to also due to Dr Davina Ghersi for her technical advice and assistance in the preparation of the technical consultations for this guideline and Mr Issa T. Matta and Mrs Chantal Streijffert Garon from the World Health Organization (WHO) Office of the Legal Counsel for their support in the management of conflicts of interest procedures. Ms Grace Rob and Mrs Paule Pillard from the Micronutrients Unit, Department of Nutrition for Health and Development, provided logistic support.

WHO gratefully acknowledges the technical input of the WHO Nutrition Steering Committee and the Nutrition Guidance Expert Advisory Group (NUGAG), especially the chairs of the meetings, Dr Janet King, Dr Rebecca Stoltzfus and Dr Rafael Flores-Ayala. WHO is also grateful to the Cochrane Developmental, Psychosocial and Learning Problems Group staff for their support during the development of the systematic review used to inform this guideline.

Financial support

WHO thanks the Government of Luxembourg for providing financial support for this work.
Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age

Summary

It is estimated that 190 million preschool infants and children are affected by vitamin A deficiency and 293 million children in the same age group have anaemia. Member States have requested guidance from the World Health Organization (WHO) on the effects and safety of the use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age in support of their efforts to achieve the Millennium Development Goals.

WHO has developed the present evidence-informed recommendations using the procedures outlined in the *WHO handbook for guideline development*. The steps in this process included: (i) identification of priority questions and outcomes; (ii) retrieval of the evidence; (iii) assessment and synthesis of the evidence; (iv) formulation of recommendations, including research priorities; and (v) planning for dissemination, implementation, impact evaluation and updating of the guideline. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to prepare evidence profiles related to preselected topics, based on up-to-date systematic reviews.

The guideline development group for nutrition interventions, the Nutrition Guidance Expert Advisory Group (NUGAG), comprises content experts, methodologists, representatives of potential stakeholders, and consumers. These experts participated in several WHO technical consultations concerning this guideline, held in Geneva, Switzerland, and Amman, Jordan, in 2010 and 2011. Members of the External Experts and Stakeholders Panel were identified through a public call for comments, and the panel was involved throughout the guideline development process. NUGAG members voted on the strength of the recommendation, taking into consideration: (i) desirable and undesirable effects of the intervention; (ii) the quality of the available evidence; (iii) values and preferences related to the intervention in different settings; and (iv) the cost of options available to health-care workers in different settings. All NUGAG members completed a Declaration of Interests Form before each meeting.

Home fortification of foods with micronutrient powders containing at least iron, vitamin A and zinc is recommended to improve iron status and reduce anaemia among infants and children 6–23 months of age (strong recommendation). The overall quality of the evidence for iron deficiency was found to be high, whereas for anaemia, haemoglobin concentration, iron status and growth it was moderate. Ideally, interventions with multiple micronutrient powders should be implemented as part of a national infant and young child feeding programme.

1 A WHO guideline is any document, whatever its title, containing WHO recommendations about health interventions, whether they be clinical, public health or policy interventions. A recommendation provides information about what policy-makers, health-care providers or patients should do. It implies a choice between different interventions that have an impact on health and that have ramifications for the use of resources. All publications containing WHO recommendations are approved by the WHO Guidelines Review Committee.
Scope and purpose

This guideline provides global, evidence-informed recommendations on the use of multiple micronutrient powders for home fortification of foods consumed by infants and young children 6–23 months of age.

The guideline will help Member States and their partners in their efforts to make informed decisions on the appropriate nutrition actions to achieve the Millennium Development Goals, in particular the eradication of extreme poverty and hunger (MDG 1) and reduction of child mortality (MDG 4). The guideline is intended for a wide audience including policy-makers, their expert advisers, and technical and programme staff at organizations involved in the design, implementation and scaling-up of nutrition actions for public health.

This document presents the key recommendation and a summary of the supporting evidence. Further details of the evidence base are provided in Annex 1 and other documents listed in the references.

Background

Iron and vitamin A deficiencies have the largest documented disease burden among micronutrients (1, 2), particularly in developing countries. Infants and children are the most vulnerable groups with regard to micronutrient malnutrition, given the high vitamin and mineral intake they need to support their rapid growth and adequate development (3). Diets that are predominantly plant-based generally provide insufficient amounts of key micronutrients to meet the recommended nutrient intakes in the age range of 6–23 months. The inclusion of animal-source foods to cover the nutrient gap has cost implications and may be not practical for the lowest income groups (4, 5). Although there are no global estimates of vitamin and mineral deficiencies specifically in children under the age of 2 years, 190 million preschool children worldwide are affected by vitamin A deficiency and 293 million children in the same age group have anaemia (6). To date, no direct estimates of zinc deficiency have been published for any age group but it is thought that it may be as widespread as iron deficiency (2).

Vitamin and mineral deficiencies frequently occur simultaneously, and their combined effects during the critical period from preconception to 23 months of age may be associated with increased neonatal mortality and morbidity, as well as irreversible adverse physical and cognitive (7–9) outcomes that lead to unfavourable lifelong consequences for health, productivity and economic growth. Nutritional risk factors, including underweight, suboptimal breastfeeding, and vitamin and mineral deficiencies, particularly vitamin A, iron or zinc deficiency, are responsible for 3.9 million deaths (35% of total deaths) and 144 million disability-adjusted life years (DALYs)¹ (33% of total DALYs) in children less than 5 years of age (2).

Interventions to prevent and/or treat micronutrient malnutrition typically include exclusive breastfeeding during the first six months of life; dietary diversification to include foods with highly absorbable vitamins and minerals; fortification of staple and complementary foods; control of parasitic infections; and provision of nutritional

¹ A DALY is the sum of the years of potential life lost due to premature mortality and the years of productive life lost due to disability.
supplements (10). Micronutrient interventions, particularly vitamin A and zinc supplements for children, and fortification of foods with iron and iodine, are among the most cost-effective global efforts (11) for health improvement. However, despite the well-recognized benefits of micronutrient interventions, successful implementation of population-level programmes has been constrained by poor adherence to supplement dosing regimens and by the potential dose-related side-effects and safety concerns.

Home fortification of foods with powders containing multiple micronutrients has been suggested as an alternative to increase the vitamin and mineral intake in children 6–23 months of age. This intervention consists of the addition of a mixture of micronutrients in powder form to any semi-solid food. The mixture is provided in single-serving sachets, the contents of which are simply sprinkled over the food before consumption (12). With this intervention, foods can be fortified either in the home or in any other place where meals are to be consumed (for example schools, refugee camps); thus it is also referred to as “point-of-use fortification” (13).

A Cochrane systematic review (13) was conducted to assess the effects and safety of home fortification with multiple micronutrient powders of foods consumed by children under 2 years with regard to improving health outcomes. The review compared the provision of multiple micronutrient powders containing at least iron, zinc and vitamin A versus no intervention or placebo, or regular supplementation practices (i.e. iron supplements, iron with folic acid supplements or iron with vitamin and mineral supplements, given in drops or syrups), for children living in a variety of settings, including malaria-endemic areas. The outcomes considered critical by the Nutrition Guidance Expert Advisory Group (NUGAG) were anaemia, haemoglobin concentration, iron status and growth. Secondary outcomes included side-effects, morbidity, mortality and neurocognitive outcomes. The potential modifying effects of baseline anaemia prevalence and iron status, iron and zinc content of the product, provision scheme, malaria setting and duration of intervention were also evaluated.

The review included eight trials (n = 3,748 children) conducted in Cambodia, Ghana, Haiti, India, Kenya, the Kyrgyz Republic and Pakistan, seven of which were considered high quality. Six trials compared daily provision of multiple micronutrient powders versus no intervention or placebo and two compared the same with the use of daily iron drops. The interventions lasted for 2–12 months and only one study evaluated the use of multiple micronutrient powders on a flexible basis (taken at will by the participants during a given period, but no more than one sachet per day). All trials used encapsulated ferrous fumarate as the source of iron and zinc gluconate as the source of zinc. Five trials were performed in malaria-endemic areas, but it was unclear from the reports whether malaria prevention and control programmes were in place in the study sites or whether concomitant malaria interventions were made available to the study participants.

In summary, home fortification of foods with multiple micronutrient powders reduced anaemia at the end of the intervention by 31% (average relative risk (RR))
Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age

Recommendation

Home fortification of foods with multiple micronutrient powders is recommended to improve iron status and reduce anaemia among infants and children 6–23 months of age (strong recommendation).1

A suggested scheme for home fortification with multiple micronutrient powders of foods consumed by infants and children aged 6–23 months is presented in Table 1.

1 A strong recommendation is one for which the guideline development group is confident that the desirable effects of adherence outweigh the undesirable effects. This can be either in favour of or against an intervention. Implications of a strong recommendation for patients are that most people in their situation would desire the recommended course of action and only a small proportion would not. Implications for clinicians are that most patients should receive the recommended course of action, and adherence to this recommendation is a reasonable measure of good-quality care. With regard to policy-makers, a strong recommendation means that it can be adapted as a policy in most situations.
Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age

The recommendation for the composition of the powder is based on the doses and nutrients included in the systematic review (13). In addition to iron, vitamin A and zinc, multiple micronutrient powders may contain other vitamins and minerals at currently recommended nutrient intake (RNI) doses for the target population (14).

12.5 mg of elemental iron equals 37.5 mg of ferrous fumarate, 62.5 mg of ferrous sulfate heptahydrate or 105 mg of ferrous gluconate.

In malaria-endemic areas, the provision of iron should be implemented in conjunction with measures to prevent, diagnose and treat malaria (15).

This guideline is not applicable to children with specific conditions such as human immunodeficiency virus (HIV) infection or tuberculosis as the effects and safety of the intervention in these specific groups have not been evaluated.

Programmes involving the use of multiple micronutrient powders for home fortification of foods should be preceded by an evaluation of the nutritional status among children under 5 years of age and existing measures to control anaemia and vitamin A deficiency, such as hookworm control programmes, the provision of supplements and the use of other products for home fortification of foods and fortified complementary foods, to ensure that the daily micronutrient needs are met and not exceeded.

Table 1

Suggested scheme for home fortification with multiple micronutrient powders of foods consumed by infants and children 6–23 months

| Composition per sachet\(^a\) | • Iron: 12.5 mg of elemental iron, preferably as encapsulated ferrous fumarate\(^b\)
• Vitamin A: 300 µg of retinol
• Zinc: 5 mg of elemental zinc, preferably as zinc gluconate |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>One sachet per day</td>
</tr>
<tr>
<td>Duration and time interval between periods of intervention</td>
<td>At minimum, for a period of 2 months, followed by a period of 3–4 months off supplementation, so that use of the micronutrient powders is started every 6 months</td>
</tr>
<tr>
<td>Target group</td>
<td>Infants and children 6–23 months of age, starting at the same time as weaning foods are introduced into the diet</td>
</tr>
<tr>
<td>Settings</td>
<td>Populations where the prevalence of anaemia in children under 2 years or under 5 years of age is 20% or higher</td>
</tr>
</tbody>
</table>

\(^a\) The recommendation for the composition of the powder is based on the doses and nutrients included in the systematic review (13). In addition to iron, vitamin A and zinc, multiple micronutrient powders may contain other vitamins and minerals at currently recommended nutrient intake (RNI) doses for the target population (14).

\(^b\) 12.5 mg of elemental iron equals 37.5 mg of ferrous fumarate, 62.5 mg of ferrous sulfate heptahydrate or 105 mg of ferrous gluconate.
• Such programmes should also include a behaviour change communication strategy that promotes: awareness and correct use of the powders along with information on recommended breastfeeding practices; commencement of complementary foods at 6 months of age; preparation of complementary foods at age-appropriate frequency, amounts, consistency and variety \(^{(16, 17)}\); hand washing with soap and hygienic preparation of food; prompt attention to fever in malaria settings; and measures to manage diarrhoea \(^{(18)}\).

• The selection of the most appropriate delivery platform should be context-specific, with the aim of reaching the least favoured populations and ensuring an adequate and continued supply of the powders.

• Given the multiple determinants of vitamin and mineral deficiencies and the range of factors affecting successful implementation of the intervention, the provision of multiple micronutrient powders on a larger scale may not produce exactly the same results as observed in the trials informing this guideline.

• In settings where iron supplementation among this population has been widely implemented and has proved to be effective, a cost-effectiveness analysis is recommended to determine whether the current intervention should be replaced by provision of multiple micronutrient powders.

Dissemination

The current guideline will be disseminated through electronic media such as slide presentations, CD-ROMs and the World Wide Web, either through the World Health Organization (WHO) Micronutrients and United Nations Standing Committee on Nutrition (SCN) mailing lists or the WHO nutrition web site. Currently, the Department of Nutrition for Health and Development is developing the WHO e-Library of Evidence for Nutrition Actions (eLENA). This library aims to compile and display WHO guidelines related to nutrition, along with complementary documents such as systematic reviews and other evidence that informed the guidelines, biological and behavioural rationales, and additional resources produced by Member States and global partners. In addition, the guideline will be disseminated through a broad network of international partners, including WHO country and regional offices, ministries of health, WHO collaborating centres, universities, other United Nations agencies and nongovernmental organizations.

Adaptation and implementation

As this is a global guideline, it should be adapted to the context of each Member State. Prior to implementation, interventions involving home fortification of foods with multiple micronutrient powders should have well-defined objectives that take
into account available resources, existing policies, suitable delivery platforms, and suppliers, communication channels and potential stakeholders. Home fortification programmes should start with a pilot and scaled up as experience and evidence grow and resources allow. Ideally, this intervention should be implemented as part of a national infant and young child feeding programme.

To ensure that WHO global guidelines and other evidence-informed recommendations for micronutrient interventions are better implemented in low- and middle-income countries, the Department of Nutrition for Health and Development works with the WHO Evidence-Informed Policy Network (EVIPNet) programme. EVIPNet promotes partnerships at country level between policy-makers, researchers, and civil society to facilitate policy development and implementation through use of the best available evidence.

Monitoring and evaluation of guideline implementation

A plan for monitoring and evaluation with appropriate indicators is encouraged at all stages. The impact of this guideline can be evaluated within countries (i.e. monitoring and evaluation of programmes implemented at national or regional scale) and across countries (i.e. the adoption and adaptation of the guideline globally). The WHO Department of Nutrition for Health and Development, Micronutrients Unit, jointly with the Centers for Disease Control and Prevention (CDC) International Micronutrient Malnutrition Prevention and Control (IMMPaCt) programme, and with input from international partners, has developed a generic logic model for micronutrient interventions in public health (19) to depict the plausible relationships between inputs and expected MDGs by applying the micronutrient programme evaluation theory. Member States can adjust the model and use it in combination with appropriate indicators, for designing, implementing, monitoring and evaluating the successful scaling-up of nutrition actions.

For evaluation at the global level, the WHO Department of Nutrition for Health and Development is developing a centralized platform for sharing information on nutrition actions in public health practice implemented around the world. By sharing programmatic details, specific country adaptations and lessons learnt, this platform will provide examples of how guidelines are being translated into nutrition actions.

The recommendation in the present guideline should be adapted into a locally appropriate document to meet the specific needs of each country and health service.

Implications for future research

Discussion with NUGAG members and stakeholders highlighted the limited evidence in some areas, meriting further research on the use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 years of age, in particular, in the following areas:

- side-effects associated with home fortification with multiple micronutrient powders in various settings where infection and malnutrition are common, with
emphasize on the harmonization of outcome definitions to help to assess the harms and benefits of this intervention in various contexts, particularly in areas with high transmission of malaria;

- safety and efficacy of the iron compounds (or combinations of compounds) used in multiple micronutrient powder formulations for children 6–23 months of age. If ferric sodium EDTA (FeNaEDTA) is included in clinical trials as a source of iron, the EDTA intake (including other dietary sources) should not exceed 1.9 g EDTA/day (20, 21);

- determination of the safe amounts of folic acid in areas with high malaria endemicity;

- determination of the most appropriate dose of zinc and other vitamins and minerals to be included in multiple micronutrient powders and the effects of these micronutrients on indicators of nutritional status other than iron deficiency and anaemia (e.g. improvement of iodine status, prevention of vitamin A deficiency, prevention of zinc deficiency) and on important functional outcomes including growth and motor and cognitive skills;

- the most effective regimen for distribution and consumption of multiple micronutrient powders, for example intermittent or flexible schemes as alternatives to daily provision of multiple micronutrient powders;

- determination of the most appropriate foods to serve as a vehicle for multiple micronutrient powders to improve their bioavailability;

- impact of the form of delivery (single-serving sachets) of multiple micronutrient powders in areas with limited waste management strategies, to balance the benefits of this intervention against environmental concerns and overall health, that is, not only in terms of nutritional status.

Guideline development process

This guideline was developed in accordance with the WHO evidence-informed guideline development procedures, as outlined in the WHO handbook for guideline development (22).

Advisory groups

A WHO Steering Committee for Nutrition Guidelines Development, led by the Department of Nutrition for Health and Development and the Department of Research Policy and Cooperation, was established in 2009 with representatives from all WHO departments with an interest in the provision of scientific nutrition advice, including Child and Adolescent Health and Development, Reproductive Health and Research, and the Global Malaria Programme. The Steering Committee guided the development of this guideline and provided overall supervision of the guideline development process (Annex 2). Two additional groups were formed: an advisory guideline group and an External Experts and Stakeholders Panel.
The Nutrition Guidance Expert Advisory Group, NUGAG, was also established in 2009 (Annex 3). NUGAG consists of four subgroups: (i) Micronutrients, (ii) Diet and Health, (iii) Nutrition in Life course and Undernutrition, and (iv) Monitoring and Evaluation. Its role is to advise WHO on the choice of important outcomes for decision-making and in the interpretation of the evidence. NUGAG includes experts from various WHO expert advisory panels and those identified through open calls for specialists, taking into consideration a balanced gender mix, multiple disciplinary areas of expertise and representation from all WHO regions. Efforts were made to include content experts, methodologists, representatives of potential stakeholders (such as managers and other health professionals involved in the health-care process) and consumers. Representatives of commercial organizations may not be members of a WHO guideline group.

The External Experts and Stakeholders Panel was consulted on the scope of the guideline, the questions addressed, and the choice of important outcomes for decision-making, as well as with regard to review of the completed draft guideline (Annex 4). This was done through the WHO Micronutrients and SCN mailing lists that together include over 5500 subscribers, and through the WHO nutrition web site.

Scope of the guideline, evidence appraisal and decision-making

An initial set of questions (and the components of the questions) to be addressed in the guideline was the critical starting point for formulating the recommendation. The questions were drafted by technical staff at the Micronutrients Unit, Department of Nutrition for Health and Development, based on policy and programme guidance needs of Member States and their partners. The population, intervention, control, outcomes (PICO) format was used (Annex 5). The questions were discussed and reviewed by the WHO Steering Committee for Nutrition Guidelines Development, and feedback was received from 48 stakeholders.

The first NUGAG meeting was held on 22–26 February 2010, in Geneva, Switzerland, to finalize the scope of the questions and rank the critical outcomes and populations of interest. The NUGAG – Micronutrients Subgroup discussed the relevance of the questions and modified them as needed. The guideline group scored the relative importance of each outcome from 1 to 9 (where 7–9 indicated that the outcome was critical for a decision, 4–6 indicated that it was important and 1–3 indicated that it was not important). The final key questions on this intervention, along with the outcomes that were identified as critical and important for decision-making, are listed in PICO format in Annex 5.

WHO staff, in collaboration with researchers from other institutions, summarized and appraised the evidence, using the Cochrane methodology for randomized controlled trials. For identifying unpublished studies or studies still in progress, a standard procedure was followed to contact more than 10 international

1 As part of the Cochrane pre-publication editorial process, reviews are commented on by external peers (an editor and two referees external to the editorial team) and the group’s statistical adviser (http://www.cochrane.org/cochrane-reviews). The Cochrane handbook for systematic reviews of interventions describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of health-care interventions.
Management of conflicts of interest

According to the rules in the WHO Basic documents (24), all experts participating in WHO meetings must declare any interest relevant to the meeting prior to their participation. The conflicts of interest statements for all guideline group members were reviewed by the responsible technical officer and the relevant departments before finalization of the group composition and invitation to attend a guideline group meeting. All guideline group members and participants of the guideline development meetings submitted a Declaration of Interests Form along with their curriculum vitae before each meeting. In addition, they verbally declared potential conflicts of interest at the beginning of each meeting. The procedures for management of conflicts of interests strictly followed WHO Guidelines for declaration of interests (WHO experts) (25). The potential conflicts of interest declared by members of the guideline group are summarized on the following page.
• Dr Héctor Bourges Rodriguez declared being chair of the executive board of the Danone Institute in Mexico (DIM), a non-profit organization promoting research and dissemination of scientific knowledge in nutrition, and receiving funds as chair honorarium from DIM. Some of the activities of the DIM may generally relate to nutrition and are funded by Danone Mexico, a food producer.

• Dr Norm Campbell at the first meeting declared owning stock in Viterra, a wheat pool for farmers that neither manufactures products nor has activities related to this guideline. In 2011 Dr Campbell declared no longer owning stocks in this company. He serves as a Pan American Health Organization (PAHO) consultant and has been an adviser to Health Canada and Blood Pressure Canada, both of which are government agencies.

• Dr Emorn Wasantwisut declared serving as a technical/scientific adviser to the International Life Sciences Institute (ILSI)/South East Asia's Food and Nutrients in Health and Disease Cluster and as a reviewer of technical documents and speaker for Mead Johnson Nutritionals. Her research unit received funds for research support from Sight and Life and the International Atomic Energy Agency (IAEA) for the use of stable isotopes to define interactions of vitamin A and iron.

• Dr Beverly Biggs declared that the University of Melbourne received funding from the National Health and Medical Research Council (NHMRC) and Australian Research Council (ARC) for research on weekly iron and folic acid supplementation in pregnancy, conducted in collaboration with the Research and Training Center for Community Development (RTCCD), the Key Centre for Women’s Health and the Murdoch Childrens Research Institute.

• Dr Gunn Vist co-authored the systematic review on the use of multiple micronutrient powders in children under 2 years of age. Dr Vist did not vote on the final draft recommendation but remained in the room during the discussions in order to answer questions regarding the systematic review.

This guideline will be reviewed in 2013; there are at least six ongoing trials which may be able to provide the evidence that is currently lacking, particularly in malaria-endemic settings. The Department of Nutrition for Health and Development at the WHO headquarters in Geneva, along with its internal partners, will be responsible for coordinating the guideline update following formal WHO handbook for guideline development procedures (22). WHO welcomes suggestions regarding additional questions for evaluation in the guideline when it is due for review.
References

Annex 1 GRADE “Summary of findings” tables

Provision of multiple micronutrient powders versus placebo/no intervention in infants and children 6–23 months of age

Patient or population: Children 6–23 months
Settings: Community settings
Intervention: Home fortification with multiple micronutrient powders
Comparison: Placebo/no intervention

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Quality of the evidence (GRADE)*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaemia (haemoglobin less than 110 g/l)</td>
<td>RR 0.69 (0.60–0.78)</td>
<td>1447 (6 studies)</td>
<td>☀ ☀ ☀ ☀</td>
<td>moderate'</td>
</tr>
<tr>
<td>Iron deficiency (as defined by the trialists)</td>
<td>RR 0.49 (0.35–0.67)</td>
<td>586 (4 studies)</td>
<td>☀ ☀ ☀ ☀</td>
<td>high¹²</td>
</tr>
<tr>
<td>Haemoglobin (g/l)</td>
<td>MD 5.87 (3.25–8.49)</td>
<td>1447 (6 studies)</td>
<td>☀ ☀ ☀ ☀</td>
<td>moderate'</td>
</tr>
<tr>
<td>Iron status (ferritin concentrations in g/l)</td>
<td>MD 20.38 (6.27–34.49)</td>
<td>264 (2 studies)</td>
<td>☀ ☀ ☀ ☀</td>
<td>moderate'</td>
</tr>
<tr>
<td>Weight-for-age (in Z-scores)</td>
<td>MD 0 (−0.37 to 0.37)</td>
<td>304 (2 studies)</td>
<td>☀ ☀ ☀ ☀</td>
<td>moderate'</td>
</tr>
</tbody>
</table>

CI, confidence interval; RR, risk ratio; MD, mean difference.
*GRADE Working Group grades of evidence:
High quality: We are very confident that the true effect lies close to that of the estimate of the effect.
Moderate quality: We have moderate confidence in the effect estimate. The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
Low quality: Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimate of the effect.
Very low quality: We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of the effect.
¹One study (Adu-Afarwuah, 2007) has serious risk of bias because the control group was not randomized. There was considerable unexplained heterogeneity, but because of the clear conclusion in the summary results, we have chosen not to downgrade.
²Assessors upgraded the quality of the evidence (from moderate to high) because of the large effect of the intervention: RR 0.49 (95% CI 0.35–0.67)

For details of studies included in the review, see reference (13).
Provision of multiple micronutrient powders versus daily use of iron supplements in infants and children 6–23 months of age

Patient or population: Children 6–23 months

Settings: Community settings

Intervention: Home fortification with multiple micronutrient powders

Comparison: Iron supplements

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Relative effect</th>
<th>Number of participants (studies)</th>
<th>Quality of the evidence (GRADE)*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaemia (haemoglobin less 110 g/l)</td>
<td>RR 0.89 (0.58–1.39)</td>
<td>145 (1 study)</td>
<td>⊕⊕⊕⊝ low</td>
<td>None of the trials reported on this outcome</td>
</tr>
<tr>
<td>Iron deficiency (as defined by the trialists)</td>
<td>Not estimable</td>
<td>0 (0 studies)</td>
<td></td>
<td>None of the trials reported on this outcome</td>
</tr>
<tr>
<td>Haemoglobin (g/l)</td>
<td>MD –2.36 (–10.30 to 5.58)</td>
<td>278 (2 studies)</td>
<td>⊕⊕⊕ moderate</td>
<td>None of the trials reported on this outcome</td>
</tr>
<tr>
<td>Iron status (ferritin concentrations in g/l)</td>
<td>Not estimable</td>
<td>0 (0 studies)</td>
<td></td>
<td>None of the trials reported on this outcome</td>
</tr>
<tr>
<td>Weight-for-age (in Z-scores)</td>
<td>Not estimable</td>
<td>0 (0 studies)</td>
<td></td>
<td>None of the trials reported on this outcome</td>
</tr>
</tbody>
</table>

CI, confidence interval; RR, risk ratio; MD, mean difference.

*GRADE Working Group grades of evidence:

High quality: We are very confident that the true effect lies close to that of the estimate of the effect.

Moderate quality: We have moderate confidence in the effect estimate. The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low quality: Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimate of the effect.

Very low quality: We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of the effect.

1 Only one study provided data for this comparison.

2 58% were anaemic at start of the 2-month intervention in one study (Hirve, 2007).

For details of studies included in the review, see reference (13).
Annex 2

WHO Steering Committee for Nutrition Guidelines Development

Dr Ala Alwan
Acting Director
Department of Chronic Diseases and Health Promotion
Noncommunicable Diseases and Mental Health (NMH) Cluster

Dr Francesco Branca
Director
Department of Nutrition for Health and Development
Noncommunicable Diseases and Mental Health (NMH) Cluster

Dr Ruediger Krech
Director
Department of Ethics, Equity, Trade and Human Rights
Information, Evidence and Research (IER) Cluster

Dr Knut Lonnroth
Medical Officer
The Stop TB Strategy
HIV/AIDS, TB and Neglected Tropical Diseases (HTM) Cluster

Dr Daniel Eduardo Lopez Acuna
Director
Department of Strategy, Policy and Resource Management
Health Action in Crises (HAC) Cluster

Dr Elizabeth Mason
Director
Department of Child and Adolescent Health and Development
Family and Community Health (FCH) Cluster

Dr Michael Mbizvo
Director
Department of Reproductive Health and Research
Family and Community Health (FCH) Cluster

Dr Jean-Marie Okwo-Bele
Director
Department of Immunization, Vaccines and Biologicals
Family and Community Health (FCH) Cluster

Dr Gottfried Otto Hirnschall
Director
Department of HIV/AIDS
HIV/AIDS, TB and Neglected Tropical Diseases (HTM) Cluster

Dr Tikki Pangestu
Director
Department of Research Policy and Cooperation
Information, Evidence and Research (IER) Cluster

Dr Isabelle Romieu
Director
Dietary Exposure Assessment Group, Nutrition and Metabolism Section
International Agency for Research on Cancer (IARC)
Lyons, France

Dr Sergio Spinaci
Associate Director
Global Malaria Programme
HIV/AIDS, TB and Neglected Tropical Diseases (HTM) Cluster

Dr Willem Van Lerberghe
Director
Department of Health Policy, Development and Services
Health Systems and Services (HSS) Cluster

Dr Maged Younes
Director
Department of Food Safety, Zoonoses and Foodborne Diseases
Health Security and Environment (HSE) Cluster

Dr Nevio Zagaria
Acting Director
Department of Emergency Response and Recovery Operations
Health Action in Crises (HAC) Cluster
Annex 3

Nutrition Guidance Expert Advisory Group (NUGAG) – Micronutrients, WHO Secretariat and external resource experts

A. NUGAG – Micronutrients
(Note: the areas of expertise of each guideline group member are given in italics)

Ms Deena Alasfoor
Ministry of Health
Muscat, Oman
Health programme management, food legislations, surveillance in primary health care

Dr Beverley-Ann Biggs
International and Immigrant Health Group
Department of Medicine
University of Melbourne
Parkville, Australia
Micronutrients supplementation, clinical infectious diseases

Dr Héctor Bourges Rodríguez
Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubiran
Mexico City, Mexico
Nutritional biochemistry and metabolism research, food programmes, policy, and regulations

Dr Norm Campbell
Departments of Medicine
Community Health Sciences and Physiology and Pharmacology
University of Calgary
Calgary, Canada
Physiology and pharmacology, hypertension prevention and control

Dr Rafael Flores-Ayala
Centers for Disease Control and Prevention (CDC)
Atlanta, United States of America
Nutrition and human capital formation, nutrition and growth, impact of micronutrient interventions

Professor Malik Goonewardene
Department of Obstetrics and Gynaecology
University of Ruhuna
Galle, Sri Lanka
Obstetrics and gynaecology, clinical practice

Dr Junsheng Huo
National Institute for Nutrition and Food Safety
Chinese Center for Disease Control and Prevention
Beijing, China
Food fortification, food science and technology, standards and legislation

Dr Janet C. King
Children’s Hospital Oakland Research Institute
Oakland, United States of America
Micronutrients, maternal and child nutrition, dietary requirements

Dr Marzia Lazzerini
Department of Paediatrics and
Unit of Research on Health Services and International Health
Institute for Maternal and Child Health
IRCCS Burlo Garofolo
Trieste, Italy
Paediatrics, malnutrition, infectious diseases

Professor Malcolm E. Molyneux
College of Medicine – University of Malawi
Blantyre, Malawi
Malaria, international tropical diseases research and practice

Engineer Wisam Qarqash
Jordan Health Communication Partnership
Johns Hopkins University
Bloomberg School of Public Health
Amman, Jordan
Design, implementation and evaluation of health communications and programmes

Dr Daniel Raiten
Office of Prevention Research and International Programs
National Institutes of Health (NIH)
Bethesda, United States of America
Malaria, maternal and child health, human development research
Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age

Dr Mahdi Ramsan Mohamed
Research Triangle Institute (RTI) International
Dar es Salaam, the United Republic of Tanzania
Malaria control and prevention, neglected tropical diseases

Dr Meera Shekar
Health Nutrition Population
Human Development Network (HDNHE)
The World Bank
Washington, DC, United States of America
Costing of interventions in public health nutrition, programme implementation

Dr Rebecca Joyce Stoltzfus
Division of Nutritional Sciences
Cornell University
Ithaca, United States of America
International nutrition and public health, iron and vitamin A nutrition, programme research

Ms Carol Tom
Central and Southern African Health Community (ECSA)
Arusha, the United Republic of Tanzania
Food fortification technical regulations and standards, policy harmonization

Dr David Tovey
The Cochrane Library
Cochrane Editorial Unit
London, England
Systematic reviews, health communications, evidence for primary health care

Mrs Vilma Qahoush Tyler
UNICEF Regional Office for Central and Eastern Europe and Commonwealth of Independent States (CEE/CIS)
Geneva, Switzerland
Food fortification, public health programmes

Dr Gunn Elisabeth Vist
Department of Preventive and International Health
Norwegian Knowledge Centre for the Health Services
Oslo, Norway
Systematic review methods and evidence assessment using GRADE methodology

Dr Emorn Wasantwisut
Mahidol University
Nakhon Pathom, Thailand
International nutrition, micronutrient biochemistry and metabolism

B. WHO

Mr Joseph Ashong
Intern (rapporteur)
Micronutrients Unit
Department of Nutrition for Health and Development

Dr Maria del Carmen Casanovas
Technical Officer
Nutrition in the Life Course Unit
Department of Nutrition for Health and Development

Dr Bernadette Daelmans
Medical Officer
Newborn and Child Health and Development Unit
Department of Child and Adolescent Health and Development

Dr Luz Maria de Regil
Epidemiologist
Micronutrients Unit
Department of Nutrition for Health and Development

Dr Chris Duncombe
Medical Officer
Anti-retroviral Treatment and HIV Care Unit
Department of HIV/AIDS

Dr Olivier Fontaine
Medical Officer
Newborn and Child Health and Development Unit
Department of Child and Adolescent Health and Development
Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age

Dr Davina Ghersi
Team Leader
International Clinical Trials Registry Platform
Department of Research Policy and Cooperation

Dr Ahmet Metin Gulmezoglu
Medical Officer
Technical Cooperation with Countries for Sexual and Reproductive Health
Department of Reproductive Health and Research

Dr Regina Kulier
Scientist
Guideline Review Committee Secretariat
Department of Research Policy and Cooperation

Dr José Martines
Coordinator
Newborn and Child Health and Development Unit
Department of Child and Adolescent Health and Development

Dr Matthews Mathai
Medical Officer
Department of Making Pregnancy Safer

Dr Mario Merialdi
Coordinator
Improving Maternal and Perinatal Health Unit
Department of Reproductive Health and Research

Dr Sant-Rayn Pasricha
Intern (rapporteur)
Micronutrients Unit
Department of Nutrition for Health and Development

Dr Juan Pablo Peña-Rosas
Coordinator
Micronutrients Unit
Department of Nutrition for Health and Development

Dr Aafje Rietveld
Medical Officer
Global Malaria Programme

Dr Lisa Rogers
Technical Officer
Micronutrients Unit
Department of Nutrition for Health and Development

Mr Anand Sivasankara Kurup
Technical Officer
Social Determinants of Health Unit
Department of Ethics, Equity, Trade and Human Rights Information

Dr Joao Paulo Souza
Medical Officer
Technical Cooperation with Countries for Sexual and Reproductive Health
Department of Reproductive Health and Research

Dr Severin Von Xylander
Medical Officer
Department of Making Pregnancy Safer

Dr Godfrey Xuereb
Technical Officer
Surveillance and Population-based Prevention Unit
Department of Chronic Diseases and Health Promotion

C. WHO regional offices

Dr Abel Dushimimana
Medical Officer
Nutrition
WHO Regional Office for Africa
Brazzaville, Congo

Dr Chessa Lutter
Regional Adviser
Child and Adolescent Health
WHO Regional Office for the Americas/Pan American Health Organization
Washington, DC, United States of America
Dr Kunal Bagchi
Regional Adviser
Nutrition and Food Safety
WHO Regional Office for South-East Asia
New Delhi, India

Dr Joao Breda
Noncommunicable Diseases and Environment
WHO Regional Office for Europe
Copenhagen, Denmark

Dr Ayoub Al-Jawaldeh
Regional Adviser
Nutrition
WHO Regional Office for the Eastern Mediterranean
Cairo, Egypt

Dr Tommaso Cavalli-Sforza
Regional Adviser
Nutrition
WHO Regional Office for the Western Pacific
Manila, Philippines

D. External resource experts

Dr Andreas Bluethner
BASF SE
Limburgerhof, Germany

Dr Denise Coitinho Delmuè
United Nations System Standing Committee on Nutrition (SCN)
Geneva, Switzerland

Professor Richard Hurrell
Laboratory of Human Nutrition
Swiss Federal Institute of Technology
Zurich, Switzerland

Dr Guansheng Ma
National Institute for Nutrition and Food Safety
Chinese Center for Disease Control and Prevention
Beijing, China

Dr Regina Moench-Pfanner
Global Alliance for Improved Nutrition (GAIN)
Geneva, Switzerland

Ms Sorrel Namaste
Office of Prevention Research and International Programs
National Institutes of Health (NIH)
Bethesda, United States of America

Dr Lynnette Neufeld
Micronutrient Initiative
Ottawa, Canada

Dr Juliana Ojukwu
Department of Paediatrics
Abakaliki, Nigeria

Dr Mical Paul
Infectious Diseases Unit
Rabin Medical Center
Tel Aviv University
Petah-Tikva, Israel

Mr Arnold Timmer
United Nations Children’s Fund (UNICEF)
New York, United States of America

Dr Stanley Zlotkin
Division of Gastroenterology, Hepatology and Nutrition
The Hospital for Sick Children
Toronto, Canada
Annex 4

External Experts and Stakeholders Panel – Micronutrients

Dr Ahmadwali Aminee
Micronutrient Initiative
Kabul, Afghanistan

Dr Mohamd Ayoya
United Nations Children’s Fund (UNICEF)
Port Au-Prince, Haiti

Dr Salmeh Bahmanpour
Shiraz University of Medical Sciences
Shiraz, Iran (Islamic Republic of)

Mr Eduard Baladia
Spanish Association of Dieticians and Nutritionists
Barcelona, Spain

Dr Levan Baramidze
Ministry of Labour
Health and Social Affairs
Tbilisi, Georgia

Mr Julio Pedro Basulto Marset
Spanish Association of Dieticians and Nutritionists
Barcelona, Spain

Dr Christine Stabell Benn
Bandim Health Project
Statens Serum Institut
Copenhagen, Denmark

Dr Jacques Berger
Institut de Recherche pour le Développement
Montpellier, France

Dr R.J. Berry
Centers for Disease Control and Prevention (CDC)
Atlanta, United States of America

Ms E.N. (Nienke) Blok
Ministry of Health, Welfare and Sport
The Hague, the Netherlands

Ms Lucie Bohac
Iodine Network
Ottawa, Canada

Dr Erick Boy-Gallego
HarvestPlus
Ottawa, Canada

Dr Mario Bracco
Albert Einstein Social Responsibility Israeli Institute
São Paulo, Brazil

Dr Gerard N. Burrow
International Council of Iodine Deficiency Disorders
Ottawa, Canada

Dr Christine Clewes
Global Alliance for Improved Nutrition
Geneva, Switzerland

Dr Bruce Cogill
Global Alliance for Improved Nutrition
Geneva, Switzerland

Mr Hector Cori
DSM
Santiago, Chile

Dr Maria Claret Costa Monteiro Hadler
Federal University of Goiás
Goiânia, Brazil

Ms Nita Dalmiya
United Nations Children’s Fund (UNICEF)
New York, United States of America

Professor Ian Darnton-Hill
University of Sydney
Sydney, Australia

Professor Kathryn Dewey
University of California
Davis, United States of America

Professor Michael Dibley
Sydney School of Public Health
University of Sydney
Sydney, Australia

Dr Marjoleine Dijkhuizen
University of Copenhagen
Copenhagen, Denmark

Ms Tatyana El-Kour
World Health Organization
Amman, Jordan

Dr Suzanne Filteau
London School of Hygiene and Tropical Medicine
London, England

Dr Rodolfo F. Florentino
Nutrition Foundation of the Philippines
Manila, Philippines
Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age

Dr Ruth Oniango
African Journal of Food, Agriculture, Nutrition and Development (AJFAND)
Nairobi, Kenya

Dr Saskia Osendarp
Science Leader Child Nutrition
Unilever R&D
Vlaardingen, the Netherlands

Dr Jee Hyun Rah
DSM-WFP Partnership
DSM – Sight and Life
Basel, Switzerland

Mr Sherali Rahmatulloev
Ministry of Health
Dushanbe, Tajikistan

Ms Anna Roesler
Menzies School of Health Research/
Compass Women’s and Children’s Knowledge Hub for Health
Chiang Mai, Thailand

Professor Irwin Rosenberg
Tufts University
Boston, United States of America

Professor Amal Mamoud Saeid Taha
Faculty of Medicine
University of Khartoum
Khartoum, Sudan

Dr Isabella Sagoe-Moses
Ghana Health Service
Accra, Ghana

Dr Dia Sanou
Department of Applied Human Nutrition
Mount Saint Vincent University
Halifax, Canada

Dr Rameshwar Sarma
St James School of Medicine
Bonaire, the Netherlands Antilles

Dr Andrew Seal
University College London
Centre for International Health and Development
London, England

Dr Magdy Shehata
World Food Programme
Cairo, Egypt

Mr Georg Steiger
DSM Nutritional Products
DSM Life Science Products International
Basel, Switzerland

Professor Barbara Stoecker
Oklahoma State University
Oklahoma City, United States of America

Dr Ismael Teta
Micronutrient Initiative
Ottawa, Canada

Dr Ulla Uusitalo
University of South Florida
Tampa, United States of America

Dr Hans Verhoef
Centre for Nutrition and Health
National Institute for Public Health and the Environment (RIVM)
Bilthoven, the Netherlands

Dr Hans Verhagen
Wageningen University
Wageningen, the Netherlands

Dr Sheila Vir Chander
Public Health Nutrition Development Centre
New Delhi, India

Dr Annie Wesley
Micronutrient Initiative
Ottawa, Canada

Dr Frank Wieringa
Institut de Recherche pour le Développement
Montpellier, France

Ms Caroline Wilkinson
United Nations High Commission for Refugees
Geneva, Switzerland

Dr Pascale Yunis
American University of Beirut Medical Center
Beirut, Lebanon

Dr Lingxia Zeng
Xi’an JiaoTong University College of Medicine
Xi’an, China

Annex 5

Effects and safety of multiple micronutrient powders for infants and young children

a. Can multiple micronutrient powders be used in infants and young children 6–23 months of age to improve health outcomes?

b. If so, at what dose, frequency and duration?

Questions in Population, Intervention, Control, Outcomes (PICO) format

Population: Infant and young children 6-23 months

Subpopulation:

- By malaria transmission (four categories: no transmission or elimination achieved, susceptibility to epidemic malaria, year-round transmission with marked seasonal fluctuations, year-round transmission with consideration of *Plasmodium falciparum* and/or *Plasmodium vivax*)
- By use of concurrent antimalarial measures
- By prevalence of anaemia in children 6–23 months of age: countries with a public health problem (5–19.9%, mild; 20–39.9%, moderate, 40% or more, severe) versus no public health problem (less than 5%)
- By individual anaemia status: anaemic children versus non-anaemic children (defined as haemoglobin less than 110 g/l)
- By iron status: iron-deficient versus (non-iron-deficient) children (as defined by ferritin, transferrin receptor, and/or zinc protoporphyrin/haem ratio (ZPPH) cut-offs)

Intervention: Multiple micronutrient powder formulations containing iron, zinc and vitamin A, with or without other micronutrients

- **Subgroup analysis:**
 - By content of product:
 - Iron: less than 12.5 mg versus 12.5 mg or more
 - Zinc: less than 5.0 mg versus 5.0 mg or more
 - By number of micronutrients: 5 or fewer versus 6 or more
 - By frequency: daily versus weekly versus flexible
 - By duration of intervention: less than 6 months versus 6 months or more
 - By level of exposure to the intervention: high versus low

Control:

- No provision of multiple micronutrient powders, or placebo
- Provision of iron supplements

Outcomes:

- **Critical**
 - Haemoglobin values
 - Anaemia
 - Iron status (as defined by the trialists)
 - Malaria incidence and severity (parasitaemia with or without symptoms)

For malaria-endemic areas only

Setting: All countries
Annex 6
Summary of NUGAG members’ considerations for determining the strength of the recommendation

<table>
<thead>
<tr>
<th>Category</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of evidence:</td>
<td>• The quality of the evidence for anaemia and iron deficiency was considered sufficient to support recommendation in all settings, including areas of malaria transmission</td>
</tr>
<tr>
<td>Values and preferences:</td>
<td>• Large groups of children under 2 years are affected by iron deficiency and may benefit from this intervention. Other options (i.e. fortification) may be preferred in order to reach a larger proportion of the target population</td>
</tr>
<tr>
<td>Trade-off between benefits and harm:</td>
<td>• This intervention is effective for prevention of iron deficiency and anemia but there is still uncertainty regarding adverse effects, particularly diarrhoea and malaria</td>
</tr>
</tbody>
</table>
| **Costs and feasibility:** | • This intervention may be more expensive than drops but is feasible
• Cost-effectiveness analyses in different settings are needed |
Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6 –23 months of age

For more information, please contact:

Department of Nutrition for Health and Development
World Health Organization
Avenue Appia 20, CH-1211 Geneva 27, Switzerland
Fax: +41 22 791 4156
E-mail: nutrition@who.int
www.who.int/nutrition